RFI to EESS Sensors

Here you will find information on RFI to EESS sensors in order to assist Space Agencies in the handling and reporting of RFI.

General information

RFI is known to affect nearly all EESS sensors operating below 20 GHz, incl​uding AMSR-2, MWRI, GMI, Sentinel-1, SMAP, SMOS, SMR, WindSat and many others.

Two types of measures can be taken to avoid or mitigate impact from RFI:

  • Preventive: Application of the Radio Regulations and all relevant Recommendations, Reports and Resolutions, providing international recognition and protection to the EESS (passive) sensors.
  • ​Corrective: Reporting, to your administration and through the ITU-R process, of harmful interference to the concerned administration.

Reporting about RFI

SFCG members are strongly encouraged to report cases of RFI experienced by their EESS sensors, in accordance with Resolution SFCG A36-2R2 and Resolution SFCG A32-1. Article 15 of the Radio Regulations and in particular its provisions No. 15.21 (section on Reports on Infringements) and Nos. 15.22-15.46 (section on Procedure in case of harmful interference) are applicable in cases of harmful interference. Appendix 9 and Appendix 10 of the Radio Regulations are applicable to report about irregularity or infringement and about harmful interference respectively. The ITU-R has developed a web-based reporting tool called SIRRS​ (Satellite Interference Reporting and Resolution System) to facilitate addressing cases of RFI, including RFI to EESS sensors. The SIRRS users can submit new reports and access any report related to their administration or that was filed publicly.*

* A SIRRS User Account is required to access the database and input reports. More information on accounts and access is available on the ITU website at the following link:

https://www.itu.int/en/ITU-R/space/SIRRS/Pages/default.aspx

Relevant ITU-R Recommendations and Reports

  • Recommendation RS.1166-5:: Performance and interference criteria for active spaceborne sensors
  • Recommendation RS.2017-0: Performance and interference criteria for satellite passive remote sensing
  • Recommendation RS.2106-0: Detection and resolution of radio frequency interference to Earth exploration-satellite service (passive) sensors
  • Report SM.2181-0: Use of Appendix 10 of the Radio Regulations to convey information related to emissions from both GSO and non-GSO space stations including geolocation information
  • Report RS.2165-0: Identification of degradation due to interference and characterization of possible interference mitigation techniques for passive sensors operating in the Earth exploration satellite service (passive)
  • Report RS.2490: Global survey of radio frequency interference observed by the Aquarius scatterometer in the 1 215-1 300 MHz band and the Aquarius radiometer in the 1 400-1 427 MHz band
  • Report RS.2491: Global survey of radio frequency interference observed by the SMAP radar in the 1 215-1 300 MHz band and the SMAP radiometer in the 1 400-1 427 MHz band
  • ​​Report RS.2492: Global survey of radio frequency interference observed by SMOS radiometer in the EESS (passive) band 1 400-1 427 MHz

    • Examples of RFI in different bands and sensors

      Some examples of RFI cases documented in the scientific literature are presented below. This list does not include all sensors or all frequency bands affected by RFI.

      • 1.215-1.300 GHz
        • ALOS: Meyer, F.J., Nicoll, J.B. and Doulgeris, A.P., 2013. Correction and characterization of radio frequency interference signatures in L-band synthetic aperture radar data. IEEE Transactions on Geoscience and Remote Sensing, 51 (10), pp.4961-4972.
        • ALOS-2: Natsuaki, R., Motohka, T., Suzuki, S. and Tadono, T., 2017, August. Radio frequency interference in ALOS-2 PALSAR-2 interferogram. In 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) (pp. 1-4). IEEE.
        • Aquarius: Le Vine, D.M. and de Matthaeis, P., 2014. Aquarius active/passive RFI environment at L-band. IEEE Geoscience and Remote Sensing Letters, 11(10), pp.1747-1751.
        • JERS-1: Daito, K., Ferretti, A., Kuzuoka, S., Novali, F., Panzeri, P. and Rocca, F., 2003, December. L-band PS analysis: JERS-1 results and TerraSAR-L predictions. In Proceedings of Fringe.
        • LuTan-1: Cai, Y., Li, J., Yang, Q., Liang, D., Liu, K., Zhang, H., Lu, P. and Wang, R., 2023. First Demonstration of RFI Mitigation in the Phase Synchronization of LT-1 Bistatic SAR. IEEE Transactions on Geoscience and Remote Sensing.
        • SAOCOM: Palomeque, M., Ferreyra, J. and Thibeault, M., 2024. Monitoring Results of the SAOCOM-1 Constellation: A mission overview and summary of results. IEEE Geoscience and Remote Sensing Magazine.

       

      • 1.400-1.427 GHz
        • Aquarius: Le Vine, D.M. and de Matthaeis, P., 2014. Aquarius active/passive RFI environment at L-band. IEEE Geoscience and Remote Sensing Letters, 11(10), pp.1747-1751.
        • SMAP: Mohammed, P.N., Aksoy, M., Piepmeier, J.R., Johnson, J.T. and Bringer, A., 2016. SMAP L-band microwave radiometer: RFI mitigation prelaunch analysis and first year on-orbit observations. IEEE Transactions on Geoscience and Remote Sensing, 54 (10), pp.6035-6047.
        • SMAP: D. Le Vine, P. de Matthaeis, P. N. Mohammed and J. Higgins, “A Case Study in RFI at L-band Detected by SMAP,” IGARSS 2023 – 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 697-699.
        • SMOS: Daganzo-Eusebio, E., Oliva, R., Kerr, Y.H., Nieto, S., Richaume, P. and Mecklenburg, S.M., 2013. SMOS radiometer in the 1400–1427-MHz passive band: Impact of the RFI environment and approach to its mitigation and cancellation. IEEE Transactions on Geoscience and Remote Sensing, 51(10), pp.4999-5007.
        • SMOS: E. Uranga, Á. Llorente, J. González and A. De La Fuente, “Improved Location Accuracy of L-Band Interference Sources Through Multiple Observations on L1C Products of the SMOS Satellite,” 2023 XXXVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Sapporo, Japan, 2023, pp. 1-4
        • P. de Matthaeis, D. M. LeVine, Y. Soldo and A. Llorente, “Study of a Strong L-Band RFI Source,” in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 9495-9503, 2021, doi: 10.1109/JSTARS.2021.3104264

       

      • 5.250-5.570 GHz
        • ASCAT: Ticconi, F., Anderson, C., Figa-Saldana, J., Wilson, J.J.W. and Bauch, H., 2017. Analysis of radio frequency interference in Metop ASCAT backscatter measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (5), pp.2360-2371.
        • GaoFen-3: Lv, Z., Li, N., Guo, Z. and Zhao, J., 2021, May. Detection and mitigation of mutual RFI in C-band SAR: A case study of Chinese GaoFen-3. In 2021 IEEE Radar Conference (RadarConf21) (pp. 1-5). IEEE.
        • RadarSat-1: Lu, X., Yang, J., Yu, W., Su, W., Gu, H. and Yeo, T.S., 2020. Enhanced LRR-based RFI suppression for SAR imaging using the common sparsity of range profiles for accurate signal recovery. IEEE Transactions on Geoscience and Remote Sensing, 59(2), pp.1302-1318.
        • RCM: Liu, C. and Sandirasegaram, N., 2023. K-distribution based synthetic aperture radar ship detection for RADARSAT Constellation Mission medium resolution 50 m beam mode.
        • RISAT-1: Parasher, P., Aggarwal, K.M. and Ramanujam, V.M., 2019, March. RFI detection and mitigation in SAR data. In 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC) (pp. 1-4). IEEE.
        • Sentinel-1: Monti-Guarnieri, A., Giudici, D. and Recchia, A., 2017. Identification of C-band radio frequency interferences from Sentinel-1 data. Remote Sensing, 9(11), p.1183.
        • Sentinel 1: X. Leng, K. Ji and G. Kuang, “Radio Frequency Interference Detection and Localization in Sentinel-1 Images,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 11, pp. 9270-9281, Nov. 2021, doi: 10.1109/TGRS.2021.3049472

       

      • 6.425-7.250 GHz
        • AMSR-E: Maeda, K., Shibata, A. and Imaoka, K., 2011, July. Protection of 6–7GHZ band spaceborne microwave radiometer from interferences to derive sea surface temperature and others. In 2011 IEEE International Geoscience and Remote Sensing Symposium (pp. 4217-4220). IEEE.
        • AMSR-2: de Nijs, A.H., Parinussa, R.M., de Jeu, R.A., Schellekens, J. and Holmes, T.R., 2015. A methodology to determine radio-frequency interference in AMSR2 observations. IEEE Transactions on Geoscience and Remote Sensing, 53(9), pp.5148-5159.
        • ​HY-2B: Li, Y., Ren, H., Wang, C., Zhou, W. and Gao, W., 2021, August. Lessons Learnt from HY-2B RFI Activities and Preliminary Studies on RFI Detection and Localization for the Chinese Ocean Salinity Satellite. In 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) (pp. 1-4). IEEE.
        • OceanSat: Wen, J., Jackson, T.J., Bindlish, R. and Su, Z.B., 2006. Evaluation of the Oceansat‐1 Multi‐frequency Scanning Microwave Radiometer and its potential for soil moisture retrieval. International journal of remote sensing, 27(18), pp.3781-3796.
        • WindSat: Ellingson, S.W. and Johnson, J.T., 2006. A polarimetric survey of radio-frequency interference in C-and X-bands in the continental United States using WindSat radiometry. IEEE transactions on geoscience and remote sensing, 44(3), pp.540-548.

       

      • 9.2-10.4 GHz
        • TerraSar-X: Nabil, H., Chen, J., Kamel, H. and Kuang, H., 2014, July. Bidirectional notch filter for suppressing pulse modulated radio-frequency-interference in SAR data. In 2014 IEEE Geoscience and Remote Sensing Symposium (pp. 1136-1139). IEEE
      • 10.6-10.7 GHz
        • AMSR-E: Zou, X., Tian, X. and Weng, F., 2014. Detection of television frequency interference with satellite microwave imager observations over oceans. Journal of atmospheric and oceanic technology, 31(12), pp.2759-2776.
        • AMSR-2: Draper, D.W. and de Matthaeis, P., 2018, July. Radio frequency interference trends for the AMSR-E and AMSR2 radiometers. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 301-304). IEEE.
        • FY-3B: Zou, X., Zhao, J., Weng, F. and Qin, Z., 2012. Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). IEEE transactions on geoscience and remote sensing, 50(12), pp.4994-5003.
        • FY-3B: Y. Han, H. Hu, Y. Shi and J. Yang, “Identification and Correction of Radio Frequency Interference of Fengyun-3 Microwave Radiation Imager Using a Machine-Learning Method,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-13, 2023, Art no. 5301213, doi: 10.1109/TGRS.2023.3268678
        • GMI: Draper, D.W., 2016, October. Terrestrial and space-based RFI observed by the GPM microwave imager (GMI) within NTIA semi-protected passive earth exploration bands at 10.65 and 18.7 GHz. In 2016 Radio Frequency Interference (RFI) (pp. 26-30). IEEE.
        • WindSat: Ellingson, S.W. and Johnson, J.T., 2006. A polarimetric survey of radio-frequency interference in C-and X-bands in the continental United States using WindSat radiometry. IEEE transactions on geoscience and remote sensing, 44(3), pp.540-548.

       

      • 18.6-18.8 GHz
        • AMSR-E: McKague, D., Puckett, J.J. and Ruf, C., 2010, July. Characterization of K-band radio frequency interference from AMSR-E, WindSat and SSM/I. In 2010 IEEE International Geoscience and Remote Sensing Symposium (pp. 2492-2494). IEEE.
        • AMSR-2: Tian, X. and Zou, X., 2016. Television frequency interference in AMSR2 K-band measurements over reflective surfaces. IEEE Geoscience and Remote Sensing Letters, 13(11), pp.1621-1625.
        • GMI: Draper, D.W., 2016, October. Terrestrial and space-based RFI observed by the GPM microwave imager (GMI) within NTIA semi-protected passive earth exploration bands at 10.65 and 18.7 GHz. In 2016 Radio Frequency Interference (RFI) (pp. 26-30). IEEE.
        • HY-2B: Li, Y., Ren, H., Wang, C., Zhou, W. and Gao, W., 2021, August. Lessons Learnt from HY-2B RFI Activities and Preliminary Studies on RFI Detection and Localization for the Chinese Ocean Salinity Satellite. In 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) (pp. 1-4). IEEE.
        • WindSat: McKague, D., Puckett, J.J. and Ruf, C., 2010, July. Characterization of K-band radio frequency interference from AMSR-E, WindSat and SSM/I. In 2010 IEEE International Geoscience and Remote Sensing Symposium (pp. 2492-2494). IEEE.

       

      • 21.2-21.4 GHz
        • TRMM: Le Vine, D.M., 2019. RFI and remote sensing of the earth from space. Journal of Astronomical Instrumentation, 8(01), p.1940001.

       

      • 36-37 GHz
        • Sentinel-3: Report SFCG 41-3

       

      • General/Multiband
        • D.W. Draper, 2018. Radio frequency environment for Earth-observing passive microwave imagers. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing11(6), pp.1913-1922.
        • Le Vine, D.M., 2019. RFI and remote sensing of the earth from space. Journal of Astronomical Instrumentation, 8(01), p.1940001
        • R. Midthassel et al., “The Copernicus Imaging Microwave Radiometer (CIMR): Radio Frequency Interference Mitigation,” IGARSS 2023 – 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 5471-5474
        • R. Natsuaki, R. O. Balague, R. Diez-Garcia, M. Tao and P. De Matthaeis, “Standardizing The Impact Assessment of Radio Frequency Interference (RFI) in Space-Based Remote Sensing: Challenges and Benefits,” IGARSS 2023 – 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 2023, pp. 1119-1121
        • C. Wang, Y. Li, H. Li, W. Gao and R. Lv, “Radio-Frequency Interference (RFI) in HY-2B,” IGARSS 2022 – 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, pp. 5270-5273
        • J. T. Johnson et al., “Real-Time Detection and Filtering of Radio Frequency Interference Onboard a Spaceborne Microwave Radiometer: The CubeRRT Mission,” in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 1610-1624, 2020, doi: 10.1109/JSTARS.2020.2978016
        • M. J. Andrews, J. T. Johnson, M. Brogioni, G. Macelloni and K. C. Jezek, “Properties of the 500–2000-MHz RFI Environment Observed in High-Latitude Airborne Radiometer Measurements,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-11, 2022, Art no. 5301311, doi: 10.1109/TGRS.2021.3090945​
        • F. Huang et al., “Analysis and Mitigation of Radio Frequency Interference in Spaceborne GNSS Ocean Reflectometry Data,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-12, 2023, Art no. 5801712, doi: 10.1109/TGRS.2023.3289998​

Scroll to Top